

## **SDG**



Responsible Consumption and Production





#### 2.4 Sustainable Procurement



MCUT has established the "Regulations Governing the Management of Materials and Equipment" and conducted purchase requisitions and operations in compliance with relevant provisions. The Procurement Division of the Main Management Department, FPG, is responsible for managing purchasing matters. If suppliers have any questions regarding the product specifications requested for purchase, the procurement unit of MCUT will directly provide explanations to the suppliers. In the past three years, no contracts have been terminated due to supplier violations of regulations. MCUT has received the "Green Procurement Excellence Award" from the Environmental Protection Department of New Taipei City Government for six consecutive years (2019-2024), showcasing its commitment to reducing the environmental impact of climate change.

Through the use of FPG's purchasing resources, MCUT has partnered with approximately 15,431 domestic and international suppliers, along with around 14,829 third-party contractors as of March 2025. This collaboration encompasses project contract awards, outsourcing of labor services, and general procurement. In alignment with sustainable development goals, we have not only consulted information on environmentally friendly products and products with energy-saving labels available on the websites of the "Environmental Protection Administration, Executive Yuan" and the "Energy Administration, Ministry of Economic Affairs," but also incorporated environmental protection and energy conservation activities as part of our promotional standards.

Furthermore, the university follows the principle of local procurement, as it believes this approach enhances the local economy and helps decrease the carbon footprint linked to product transportation. In 2024, the university's total general procurement was NT\$632,516,461, with 97.35% (NT\$615,744,396) sourced locally within Taiwan, while NT\$16,772,065 was allocated for international procurement.

For construction and renovation projects and contract management, MCUT requires vendors to sign a construction operational safety notification upon being awarded a contract. This notification outlines the workplace environment, potential hazards, and necessary safety and health measures, enabling vendors to fully understand relevant provisions and precautions. Furthermore, before construction begins, vendors are required to conduct safety and health education in accordance with applicable provisions, including the Labor Health and Safety Act.





#### O Categories of main suppliers and statistics of purchasing amount in the past three years

Unit: NT\$

| Year<br>Category of supplier             |                               | 2022        | 2023        | 2024          |
|------------------------------------------|-------------------------------|-------------|-------------|---------------|
| Procurement of project contract awarding |                               | 154,583,505 | 208,215,278 | 227, 894, 702 |
| Procurement of                           | of outsourcing labor services | 25,276,323  | 27,292,164  | 28,412,122    |
| General<br>financial<br>procurement      | Green procurement             | 13,605,938  | 14,156,447  | 21, 889, 418  |
|                                          | General procurement           | 472,584,698 | 502,509,245 | 632,516,461   |

Note: Items included in green procurement mainly include environment-friendly toner cartridges, water-saving and electricity-saving materials, and energy-saving electrical products.

Sustainable

Institutional Governance

Education Performance Low-carbon Campus

Нарру Campus

Social Coprosperity

**Appendix** 



2024 Sustainability Report

#### 4.4 Waste Management

To ensure effective waste recycling, MCUT has implemented measures to manage, reward, and penalize the income from resource recycling and sales. These measures aim to encourage faculty, students. recycling and waste disposal vendors, and cleaning teams in New Taipei City to actively promote mandatory waste classification, waste reduction, and resource recycling. This effort will help achieve a sustainable circulation of resources. The primary waste sources at MCUT are general waste and laboratory waste. To effectively manage and maintain campus safety, MCUT has installed an environmental management system along with pollution prevention and control facilities in accordance with relevant environmental protection laws and regulations. This is designed to monitor the operation and volume of laboratory waste liquids and to prevent accidents or pollution.

#### **General Waste Management**

We employ two primary methods to ensure effective waste treatment; incineration and resource recycling. MCUT collaborates with contracted vendors to regularly clear and transport waste to incineration plants in New Taipei City for non-recyclable waste, ensuring safe and environmentally friendly disposal. For recyclable materials, our cleaning staffs first classify them and then use dedicated recycling vehicles to transport these materials to the resource recycling center for sale. To further enhance the benefits of waste recycling, the Office of General Affairs uses income from resource recycling to purchase recycling facilities and reward classes that excel in classroom cleaning competitions. These competitions not only encourage students to actively participate in resource recycling but also contribute to the ongoing improvement of the campus environment.

Starting in 2022, we began intensively recycling used batteries to reclaim valuable resources and reduce the risk of fire or explosion. This effort is vital to prevent hazardous incidents that may arise when waste batteries are mistakenly mixed with general refuse and placed in garbage trucks, where they can be compressed, squeezed, or create friction.



#### O Statistics of general waste disposal over the past three years

Unit: tons

| Disposal method       |                                                | 2022  | 2023  | 2024 |
|-----------------------|------------------------------------------------|-------|-------|------|
| Incineration          |                                                | 310.1 | 317.2 | 287  |
| Resource<br>recycling | Waste paper<br>(including paper<br>containers) | 65.2  | 55.4  | 47.5 |
|                       | Scrap metal                                    | 5.15  | 4.31  | 20.1 |
|                       | Waste PET bottles                              | 6.42  | 7.73  | 9.81 |
|                       | Others<br>(including batteries)                | 9.7   | 1.79  | 0.25 |

2024 Sustainability Report

O1

O Statistics of general waste disposal over the past three years



#### Resource recycling

- Resource recycling and storage facilities have been set up in the teaching areas and department offices to classify and collect recyclable waste. The collected waste is transported by specialized recycling vehicles for proper processing.
- Translucent plastic bags are utilized alongside on-site
  "unbagging inspections" to ensure effective waste monitoring and reduction.



#### Deadwood and fallen leaves

 Various types of deadwood and fallen leaves are brought to the MCUT's horticultural composting sites for composting. Consequently, the campus soil can be enhanced.



#### **Others**

- In 2024, 191.5 kg of batteries were recycled, compared to the 673.1 kg recycled in 2023.
- The number of second-hand items in 2024 reached 550, an increase of 73 items from 477 items in 2023.

Sustainable MCUT

Institutional Governance

Education Performance

Low-carbon Campus

Happy Campus

Social Coprosperity

Appendix



2024 Sustainability Report

## Industrial Waste Treatment (Laboratory Waste Liquid)

MCUT has established the Safety and Health and Toxic and Concerned Chemical Substances Control Committee to oversee the management of laboratory waste and toxic substances. Furthermore, MCUT has handled and disposed of these substances in accordance with the provisions of the Waste Disposal Act and the 'Toxic and Concerned Chemical Substances Control Act for Academic Institutions.' To manage liquid laboratory waste, MCUT has implemented the 'Campus Hazardous Industrial Waste Control System' to effectively monitor operational status and waste quantity, thereby mitigating the risk of accidents or pollution. A key part of our approach is promoting measures such as waste reduction at the source of chemical usage and allocation in order to minimize expiration and waste of chemicals, demonstrating our commitment to environmental sustainability.

Laboratory waste liquid is categorized as general industrial waste (category D) and hazardous industrial waste (category C) based on its characteristics. When the storage barrels in each laboratory reach approximately 80% of their full capacity, the relevant personnel will arrange for these barrels to be transported to MCUT's temporary waste liquid storage yard. To ensure the proper temporary storage of laboratory waste liquid, a 24-hour combustible gas detection and monitoring system, along with explosion-proof exhaust fans that operate at fixed intervals, has been installed in the temporary storage yard to prevent the accumulation of flammable gases and minimize storage risks. All laboratory waste liquid stored at MCUT is entrusted annually to qualified clearing and treatment practitioners for delivery to National Cheng Kung University for processing. During the treatment process, no hazardous gases, solids, or liquids are emitted or discharged, ensuring the proper handling of laboratory waste.





#### O Industrial waste (laboratory waste liquid) in the past three years

Unit: Ton

| ltem Year                                              | 2022  | 2023   | 2024 |  |
|--------------------------------------------------------|-------|--------|------|--|
| General industrial waste                               |       |        |      |  |
| D-1502 Non-hazardous waste alkali                      | 0.64  | 0.695  | 0.7  |  |
| D-1503 Non-hazardous waste acid                        | 1.34  | 0.715  | 1.2  |  |
| D-1504 Non-hazardous organic waste liquids or solvents | 3.02  | 0      | 0    |  |
| D-1599 Non-hazardous mixed waste liquids               | 0.57  | 0.44   | 0.2  |  |
| D-2301 Halogenated organic waste chemicals             | 0     | 0.038  | 0.74 |  |
| D-2302 Non-halogenated organic waste chemicals         | 0     | 0.71   | 1.4  |  |
| Hazardous Industrial Waste                             |       |        |      |  |
| C-0299 Other Corrosive Industrial Waste Mixtures       | 0.405 | 0.3658 | 0.13 |  |
| C-0399 Other Flammable Industrial Waste Mixtures       | 0.375 | 0.32   | 0.2  |  |
| Total                                                  | 6.35  | 3.2838 | 4.57 |  |



## 明志科技大學

大學社會責任實踐計畫 113年度執行成果年報







#### 校園永續食農教育推廣計畫

計畫主持人|崔砢副教授



#### 一、問題意識與計畫目標

本年度新申請的大學社會責任計畫,主要是基於去年執行計畫的心得,認為與其在多場次進行推廣,不如選擇兩、三處地點進行深耕示範。如此對於廚餘廢棄物的永續循環利用,更容易建立起示範性的效果。預計推動的項目從利用EM菌將廚餘製成有機肥、到黑水虻的養殖、進一步到利用黑水虻幼蟲養雞產蛋,利用虻肥進行農耕,蚯蚓的養殖、以及利用種植的香草作物製備防蚊膏或保養品等產品,在校園內建立完整的示範基地。校外的推廣活動,預計將協助社團法人牽牛花協會(由自閉症兒童之家長所組成)、威廉斯氏症協會、或是社區活動中心的長輩們,製作甚至販售這些產品。如果示範成效良好,將能進一步將此技術擴大到更多的場域。

由於有文獻指出使用EM菌用於養殖蛋雞,能提高雞蛋的品質與產量,因此在校園內的示範基地,也將比較有餵食 EM菌的蛋雞所生產的雞蛋,觀察品質與產量是否優於未餵食EM菌的控制組。此外也將協助合作夥伴進行雞蛋的無 農藥殘留的驗證,提升雞蛋的可信度與接受度。

#### 二、計畫執行重點

本計畫的活動安排,主要可分為三個主要項目:首先是校園環境教育場址的的改善精進,以及對於校園內所養殖蛋雞的營養成分分析。開設十週一系列的課程,邀請校園附近居民參加,以提升附近居民對校內環境教育場址的認識。針對弱勢團體,如牽牛花協會或是威廉斯氏症協會,安排密集的課程,協助他們製作一些相關的綠色產品。

#### 三、計畫成果亮點



裝設自動灑水系統,每日定時早上6 : 15~6:45及下午16:45~17:15維 持30分鐘。



額外購置10隻中雞,其中一半的 雞隻餵食一般的商用飼料,另一半 則餵食經EM菌發酵以及添加黑水 虻的飼料,並將所收集的雞蛋委 外進行營養成分分析,分析的項目 包含三酸甘油脂、高(低)密度膽固 醇、DHA、卵磷脂、葉黃素等。

表 4-4 2023/5/24 實驗組及對照組蛋品質數據表(台美檢驗中心)

|                          | 實       | 驗組     | 對     | 照組     | 市售雞蛋(USDA) |
|--------------------------|---------|--------|-------|--------|------------|
| 粗蛋白質(g/100g)             | 13.2    |        | 13.1  |        | 12.6       |
| 膽固醇(mg/100g)             | 293     |        | 446   |        | 373        |
| 卵磷脂(mg/100g)             | 97.46   |        | 72.46 |        | -          |
| 葉黃素總量(mg/g)              | 未       | 檢出     | 未檢出   |        | -          |
| 飽和脂肪酸總量<br>(g/100g)      | 2.41    | 35.65% | 2.93  | 35.69% | 3.27       |
| 反式脂肪酸總量<br>(g/100g)      | 未檢出 未檢出 |        | -     |        |            |
| 順式單元不飽和脂肪酸<br>總量(g/100g) | 2.8     | 41.42% | 3.63  | 44.21% | 4.08       |
| 順式多元不飽和脂肪酸<br>總量(g/100g) | 1.55    | 22.93% | 1.65  | 20.10% | 1.41       |
| omega3 脂肪酸總量<br>(g/100g) | 0.12    | 1.78%  | 0.06  | 0.73%  | -1         |
| omega6 脂肪酸總量<br>(g/100g) | 1.43    | 21.15% | 1.59  | 19.37% | -          |
| 脂肪酸總量(g/100g)            | 6.76    | 100%   | 8.21  | 100%   | 10.6       |



將竹子砍下後粉碎,後與已乾燥處裡的雞 糞、粗糠、米糠拌勻,過程中加入綠生1號 及6號。完整混和後裝置袋子裡以便靜置1 個月發酵,其中不得與空氣接觸。



發酵後的竹粉雞糞肥料與一般土壤混合, 分別為90%、70%、60%、全雞糞、純土 壤,這次植物為空心菜。



種植第1天



種植1個月後





舉辦牽牛花運動家長協會活動,帶著參與者們認識些簡單植物,如:萬壽菊、薄荷、薰衣草等,開放大家自行採收草本植物將其沖泡成茶,給予大家飲用。





崔砢老師介紹使用磨碎後的竹粉製成的博卡西,並親身示範及體驗如何將博卡西在家製作出來,以及講解使用方式。









於奇蹟之家帶著失智老人認識些簡單植物,如:萬壽菊、薄荷、薰衣草等,帶著失智老人們手 作天然植物精油乾洗手,讓大家能放在身上隨時都能使用。

# 4

#### 廢棄蛋殼永續材料再生計畫


計畫主持人|賴宛吟 工業設計系 副教授



#### 一、問題意識與計畫目標

本計畫針對蛋殼廢棄物所引發的環境污染問題,探索其再利用的可能性,以支持永續發展。隨著蛋殼在校園及周邊社區的產量增加,這些廢棄物若不妥善處理,會造成環境負擔。此計畫目標為將蛋殼轉化為可持續材料,並與超高性能混凝土(UHPC)結合,進行實際產品的開發和應用,展示其減碳潛力和資源再利用價值。

跟專家討論後,發掘廢棄牡蠣殼的問題也是亟需解決的問題,並且廢殼的成分與蛋殼相同,但硬度更高,在廢殼處理過程中有更多問題需要解決,且日本宮城縣盛產牡蠣,但在經歷311海嘯及人口老化的多重因素影響下,無論是環境面向或是社會問題,皆需協助提出更多解決方案。因此,本計劃從在地蛋殼出發到國際牡蠣殼的問題探討,跨國合作提出多元的解方,是本計劃最主要的目標。









#### 二、計畫執行重點

本計畫以多層次的執行方式推動,包括基礎材料研究、設計課程、國際合作和成果展示。首先,在本計畫結合工業設計系課程,課程中教授學生循環經濟與社會設計的基礎,並引導學生參與蛋殼收集和加工,進一步將蛋殼轉化為符合UHPC應用需求的材料。其次,進行國際工作坊,邀請專家分享廢棄材料再生的設計經驗,並帶領學生進行實作,實際帶學生到日本工程的浦戶群島進行田野調查深度了解在地問題,並訪談在地牡蠣業者,再進行設計思考及原型設計,最後提出四組可行的解決方案。計畫結束後更在泰山圖書館舉辦為期兩週成果展,展示台日學生們的設計概念及工作坊過程,提升公眾對永續材料的認識,強化學生的實踐能力,並促進跨國合作的交流。





#### 三、計畫成果亮點

本計畫通過工業設計系社會設計課程,帶領學生進行蛋殼廢棄物的收集與再利用,成功將其開發成可持續材料,並應用於多種設計產品中,體現了設計與材料創新的結合。國際演講與工作坊的成功舉辦則是另一亮點,該活動使學生在實踐中學習,並與來自不同文化背景的學者交流,不僅提升了學生的國際視野,也促進了永續設計的概念傳播,並透過國際工作坊,讓學生進行跨國跨領域的設計交流,設計四組可行的解決方案,分別是Filster、Shipping oyster shells system、moneyster 和 Oyster shell & Enviroment,將本計畫的理念推廣至日本當地,最終成果在日本宮城大學舉辦的第一屆MYU創意大賽「Derucon 2024」,獲得第二名「最佳賞」佳績。成果展覽更將本次計畫成果分享予大眾,提升社會對環保議題的關注,並展示學校在區域發展及地方創生上的承諾。









#### 一起環保旅行吧!! 水循環科技行動展示教具箱

12 RESPONSIBLE CONSUMPTION AND PRODUCTION

計畫主持人|許定洋 工業設計系 副教授

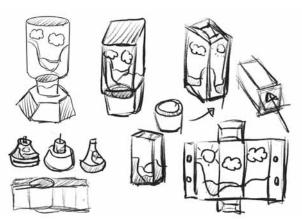
#### 一、問題意識與計畫目標

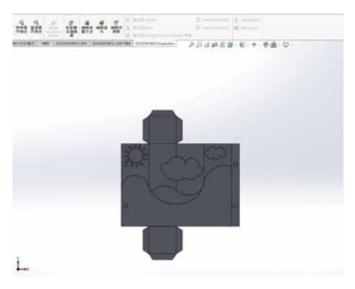
研究希望探討如何利用設計與教育工具,縮小都市與偏鄉小學生在水資源概念理解上的差距。根據相關資料,水資源短缺、氣候變遷以及人類活動對水循環的影響日益嚴重,使得水資源教育成為關鍵議題。不同地區的教育資源不均,可能導致學生對水資源的理解有差異,尤其在都市和偏鄉的學童之間。研究人員試圖了解這些差異如何影響學生的學習成果,並且探索透過教具的設計,是否可以提高偏鄉學生對水資源概念的掌握度,縮小教育差距。

研究目標是設計一款便攜且易於攜帶的水循環教具,以簡單、易理解的方式幫助小學生掌握水資源循環的基本概念。教具設計在尺寸和重量上經過考量,可以方便地收納於行李箱內,便於攜帶至不同教學場域,尤其是偏鄉學校。此教具將用於實驗教學中,透過前後測的問卷調查來評估學生在教具使用後的學習效果,並利用統計分析比較都市與偏鄉學生在水資源知識上的提升情況。希望能驗證該教具在不同背景學生中的學習成效,並分析其對於縮小城鄉教育差距的潛在影響。

#### 二、計畫執行重點

計畫的執行重點在於針對「水循環科技行動展示教具箱」的開發、實驗流程設計及數據分析的系統化執行,以確保研究結果的精確性與有效性。首先,教具箱的設計強調便攜性,所有教具能夠完整收納於標準行李箱中,以便研究人員隨時攜帶,適用於各類教學環境,尤其是偏鄉學校。教具設計重視簡易操作與視覺呈現,讓小學生能直觀理解水循環中的蒸發、凝結與降水等概念。


在實驗流程設計上,研究人員將運用前後測問卷來評估教具箱對學生學習效果的影響。在課堂教學中,學生將親自操作教具箱進行水循環模擬與觀察,並透過前測問卷記錄學生的初始知識水平,教具箱使用後再進行後測,對比學生的知識提升情況。


#### 三、計畫成果亮點

計畫成果亮點集中於水資源教具的創新設計、教育有效性驗證,以及其縮小城鄉教育差距的潛力。針對小學生設計的「水循環科技行動展示教具箱」將水資源的核心概念以簡明生動的方式呈現,使學生透過視覺化和操作過程,直觀地理解水的蒸發、凝結、降水等循環過程。教具箱設計便於攜帶,所有器材均可整齊收納於行李箱中,便於研究人員移動到偏遠地區使用,不僅符合低年齡層的認知需求,還增強了學習過程的趣味性和互動性,使學童能更有效地掌握水資源的抽象概念。

#### 1. 行動展示教具箱









#### 2. 花蓮富源國小實驗過程









#### 4. 信勢國小實驗過程







#### 3. 中和崇德文教實驗過程



## -113年-

## 觀音山環境與生態教育年報





# 明志成立永續發展辦公室 落實 ESG 願景推動永續發展

永續辦公室 撰稿

明志為具體落實永續發展目標,結合聯合國永續發展目標 (SDGs) 推動永續校園,於 2023 年成立永續發展辦公室,將致力於校園及社區 SDGs 的推廣及環境教育工作,並定期辦理環境教育講座推動永續發展。 2024 年明志與木酢達人、湖口老街攜手合作,以循環經濟和文化傳承為題,倡導廢棄木材資源再利用與老街文化保存的雙重價值,賦予了地方創生與創新實踐的新生命。

#### SDG 12 責任消費與生產

木酢達人致力於回收路樹修枝與碳循環利用,成功逆轉修枝直接進入焚化爐增加碳排放的命運。木酢達人將收回的路樹、校樹修枝透過炭化及水蒸氣回收技術,製成木炭、木酢清潔液與炭周邊產品,打造一條永續的循環經濟鏈。而這些炭周邊產品,如炭盆栽、生態炭瓶及炭除濕包等,不僅提升了炭的藝術性及功能性,也同時降低了作為燃料再次燃燒的機會,達到有效固碳及減少溫室氣體排放。

活動透過碳循環經濟教育講座,結合親手實作生態炭瓶及炭除濕包的體驗,讓參與者在實際操作中深化對循環經濟的理解。同時,午餐特別選用不繡鋼餐盒及當地小農食材製作永續餐盒,實踐零廢棄飲食理念,並藉由使用在地農產品有效縮短食材的運輸距離,減少碳排放,



明志科大宣誓推動永續發展

展現對環境保護的具體行動。此活動結合永續發展目標 SDG 12 項「責任消費與生產」,提高資源的有效利用、減少浪費與支持地方農業發展的重要性,並透過教育與實作並重的方式,啟發參與者在日常生活中實踐永續理念,進一步推動社會往循環經濟與責任消費的道路邁進。

#### SDG 11 永續城鄉

湖口老街作為新竹的文化地標之一,以其古樸的街道景觀與濃厚的歷史氛圍吸引眾多訪客,老街將完整保留的紅磚建築與拱廊磚屋,而其中的文化中心三元宮更保存了傳統建築技法與豐富的歷史記憶,成為在地文化的代表。湖口老街也以獨特的在地特色聞名,如苦茶油、手工麻糬,以及琉璃工藝品,這些傳統建築、手工藝技術和地方特色,都傳承了早期居民的智慧與歷史記憶。

在此活動中,結合老街導覽及傳統美食牛汶水體驗,帶領參與者走訪

#### 參、明志科技大學年度成果



明志科大舉辦環教講座

湖口老街的歷史建築與特色景點,深入了解湖口在地百年文化與背後的歷史價值。同時,活動結合永續發展目標 SDG 11 項「永續城鄉」,強調在快速都市化的進程中,文化保存與歷史資產維護的重要性。參與者在導覽過程中不僅感受到文化傳承的魅力,也深刻體會到保護傳統建築與促進城鄉永續發展的迫切性。透過文化教育與實地體驗的方式,啟發更多人關注並參與地方文化資產的保存與永續發展,為未來城鄉共榮的目標奠定基石。

此次永續發展推廣活動緊扣永續發展目標 SDG 11 永續城鄉與 SDG 12 責任消費與生產,不僅讓參與者重新思考自身生活方式,更推廣友善環境的行為,為地方的綠色發展與文化傳承注入新動力。未來,明志將持續透過大學社會責任影響力,讓循環經濟與文化永續的理念深植校園及社區,落實永續發展的實現。

## 廚餘再利用 - 明志 雞場服務隊

新北市泰山區明志國小衛生組組長 陳敏 撰稿

本校於 112 學年度上學期將廢棄警衛室改建為黑水虻養殖區與 蛋雞養殖場,期望將校園的閒置空間再利用,同時融入廚餘再利用的 概念,將午餐廚餘製作堆肥,餵食黑水虻,最後將黑水虻餵食蛋雞, 成為一個小型的生態循環。與此同時,為了讓學生擁有特別的服務學 習經驗,特別成立養雞隊,讓學生從製作廚餘、養殖黑水虻開始參與, 進而每天照顧蛋雞,包含撿蛋、餵雞、帶著雞隻散步等等。在以上的 服務過程中,事項繁雜且需使用中午的午休時間進行服務,因此學生 能深刻的培養愛護動物與奉獻自己的服務精神。

隨著地球人口上升,世界上的糧食面臨不足且分配不均的情況, 透過本計畫,不僅能讓學生切身體驗廚餘再利用,也能了解動物之於 人類的關係,不僅僅只是拿來當作食物,也可以作為人類的夥伴成為 生態循環的一環。

#### 一、服務學習方案設計與實施內容:

認識細菌、堆肥(一堂課) ➡ 堆肥實作(一堂課) ➡ 飼養黑水虻(一堂課)(養持續約兩週) ➡ 餵養蛋雞(持續約兩週)

#### 二、堆肥實作:

1. 蒐集廚餘:蒐集營養午餐的剩食,每組一桶。

2. 製作堆肥桶:根據製作流程,製作一桶堆肥桶

3. 蒐集液肥:每日派一名同學去蒐集堆肥桶的液肥。

#### 三、飼養黑水虻:

打開廚餘桶:觀察堆肥是否成功,是否形成一層白色酵母菌。

製作養殖盆:將堆肥放置再養殖盆中間,鋪上麥麩,倒入蟲。

持續飼養:每兩天需使用堆肥餵養一次。

#### 四、餵養蛋雞:





每日飼養:每日中午派員換蛋雞的飲用水及加飼料。

帶雞散步:每日中午帶蛋雞到學校食農園地吃草放風。

餵雞吃黑水虻:每週一次使用黑水虻餵蛋雞,增加營養。

#### 四、反思慶賀階段執行模式:

#### 1. 撰寫學習單

透過撰寫學習單,學生能夠反思在服務學習的歷程中的收穫,也許過程中曾遇到許多困難,但透過小組分工合作,讓大家順利完成活動。

#### 2. 小組分享

完成學習單後,進入小組分享環節,每個小組成員輪流分享自己的在

#### 肆、淡水河流域夥伴年度成果





這個服務學習的過程中最開心的事與最不喜歡的事。這樣能促進小組成員間的交流和合作,而且從不同的角度看待服務學習,能讓學生學習換位思考。

#### 3. 頒發服務證明

完成小組討論及個人反思後,學校會頒發服務證明時數,讓學生感受到自己努力的價值,同時也是學校對他們的服務認可。服務時數能夠記錄學生在活動中的表現和成就,並作為他們未來學習和申請學校的證明。





#### 4. 頒發蛋雞產的蛋

最後,我們將頒發蛋雞產的蛋作為服務學習的特殊獎勵。這象徵著活

動的圓滿成功,也是一份充滿意義的禮物,代表著豐收與成果,以感謝他們的付出並激勵他們在未來的生活中持續的服務他人。

自然資源的利用與變遷,影響著生態系統穩定、企業經營與當地社區的福祉,南亞科技於 2024 年落實管理自然風險,並正式發佈第一本「氣候暨自然與財務揭露報告書」,將保護生物多樣性、減緩自然風險納入企業策略,確保業務發展與自然共生。我們深知,企業的永續成長不僅依賴資源利用效率,更需要與共享同一片自然資源的社區共同努力,保護我們的環境。





## 新北市立泰山國民中學

## 食農綠金進行式

新北市泰山區泰山國中童軍團團長 賀楚彎 撰稿

#### 壹、行前課程:

#### 一、水產養殖科概述:

水產養殖科是指通過人工方式在特定環境中飼養和繁殖水生生物的科學。其目標是提高水產品的產量和質量,並對社會做出貢獻。

#### 二、養殖過程:

水產養殖過程包括養殖場選址、養殖技術、飼料和藥物的使用等。選擇合適的養殖場地點和技術是成功養殖的關鍵。

#### 三、養殖環境:

養殖環境對水產品的生長至關重要。水質、溫度、養殖密度和溶氧等 因素都會影響養殖效果。

#### 四、挑選和收購:

選擇優質的養殖產品需要考慮多方面因素,包括產品的質量和價值評估。

#### 五、安全與衛生:

確保養殖產品的安全和衛生是養殖過程中的重要環節。防止疾病的措施和管理方法至關重要。



#### 六、挑戰與展望:

水產養殖科面臨環境壓力、疾病控制和技術進步等挑戰。未來,水產養殖科將朝著更加可持續和環保的方向發展。

#### 七、水產養殖科的學校和未來進路:

許多學校提供水產養殖科的相關課程,學生可以選擇進一步深造或進 入相關行業工作。

#### 貳、主活動課程:

#### 一、仁和鮑魚養殖場的環境介紹:

仁和鮑魚養殖場注重使用生態友好的飼養方法,避免對環境造成負面影響,並採用可持續的養殖技術。

#### 二、潮間帶的生態介紹:

潮間帶是海洋與陸地交界的生態系統,對環境和生物多樣性具有重要意義。

#### 肆、淡水河流域夥伴年度成果



#### 三、鮑魚養殖方式解說:

鮑魚養殖需要特定的技術和環境管理,養殖場採用循環水系統和減少 污染排放的方法。

#### 四、海藻餵食體驗:

參與者可以親自體驗海藻餵食,了解再生資源和環保原料的使用。

#### 五、接觸九孔、海膽、寄居蟹:

參與者有機會與多種海洋生物互動,增進對海洋生態的了解。

#### 叁、配合 SDGs 指標:

#### 一、第12指標\_\_負責任的消費與生產:

強調使用生態友好的養殖方法,避免對環境造成負面影響,並提倡可持續的養殖技術。

#### 二、第13指標 氣候行動:

介紹如何使用再生資源和環保原料,並強調養殖場對可持續發展的承諾。

#### 三、第14指標 保育海洋生態:

介紹環保技術,如循環水系統、降低污染排放、支持生物多樣性等,以保護和恢復海洋生態。

#### 四、第15指標 保護陸域生態:

強調潮間帶生態的重要性,並介紹養殖場對保育這些生態系統的承諾。

#### 肆、反思與回饋:

連續兩年,感激衛生組長李以新老師推薦,讓童軍團有機會帶領學生參加水產養殖科考察活動,對童軍團來說是非常有意義的經歷。活動中,團員們深入瞭解了水產養殖科的概念、飼養過程以及飼養環境的重要性,還前往仁和鮑魚養殖場進行了實地考察,親身體驗了鮑魚的飼養、收穫和美食烹飪過程。

在參觀仁和鮑魚養殖場時,同學們深受啟發。該養殖場注重使用生態友好的飼養方法,避免對環境造成負面影響。業者採用可持續的養殖技術,如迴圈水系統和減少污染排放,以支援生物多樣性和海洋生態的保護。這種環保意識讓大眾對養殖業的可持續發展承諾印象深刻。

在活動中,大家還學習了潮間帶的生態系統,強調了保護海洋生態和陸域生態的重要性。這使學生更能意識到人類的責任,要積極採取行動保護和恢復這些珍貴的生態系統。除了增長知識,還能感受到學生們的熱情和參與度。同學們積極參與海藻飼養和與海洋生物的互動,對水產養殖科產生了濃厚的興趣。通過這次活動,不僅學到了知識,還培養了對環境保護的意識和責任感。

#### 肆、淡水河流域夥伴年度成果

通過反思和學生們的回饋,意識到這次活動對學生的影響是深遠的。學生們通過實地考察和參與互動體驗,不僅增加了對水產養殖業的瞭解(例如:九孔與鮑魚的不同),還加深了他們對可持續發展和環境保護的認識。他們對活動的評價和回饋都非常積極,表示希望能有更多這樣的實踐機會。

帶隊老師-賀楚彎團長,也表示對於學生的表現感到非常滿足和驕傲。這兩次的活動不僅讓學生們學到了知識,還激發了他們對科學研究和環境保護的興趣。相信這些經歷將對他們未來的學習和生活產生積極的影響。同時,團長也意識到自己在教學過程中應更加注重實踐與理論的結合,為學生提供更多實踐機會。

結論,食農綠金進行式的計畫,提供學生實地體驗的機會,相信學生們不僅在學科知識上有所收穫,更加深了對環境保護的認識和責任 感。希望將來能有更多這樣的活動,為學生們提供更多實踐和體驗的 機會,激發他們對科學和可持續發展的興趣。



## 如何在校園落實環境教育?

新北市泰山區義學國中衛生組長 蘇降章 撰稿

擔任學校衛生組長第6年,除了每天的校園環境維護之外,擔 負起「環境教育」的責任,也是一直以來我認為是衛生組的另一項重 要業務之一;而對我來說,最重視的環境教育議題,就是落實校園「資 源回收分類」與「妥善處理垃圾」的「基礎教育」。校園通常是學生 一天中停留時間最長的地方,在校做好正確資源回收分類,讓學生覺 得自己是環境保護的一份子,並透過實際行動,對環境保護的重要性 有更深刻的體會。因此,若能有效落實資源回收,並導入學生的日常 生活,「學校」就是一個能培養環境意識的最佳場域。

#### 一、資源回收教育的重要性

資源回收和正確處理垃圾是環境教育最基礎的一環。不管是實 特瓶、紙杯、紙碗等一次性餐具,這些回收資源如果未能正確處理, 就會成為地球沈重的負擔。

此外,資源回收不僅能減少垃圾處理成本,也能減輕環境污染。在教育層面上,通過教導學生認識資源回收的價值,可以促進他們思考如何在生活中減少浪費,進一步培養負責任的生活態度。

#### 二、校園資源回收實踐作為

#### 1. 訂定全校性資源回收類別:

從全校各班做起,設立校園常見五大類回收桶:紙類、塑膠類、紙

#### 肆、淡水河流域夥伴年度成果



餐具、紙容器、金屬類,確保各類回收資源能在最大範圍內被正確 處分類與理;並在校園資源回收場設置明確標示的回收桶,引導學 生進行正確分類。

#### 2. 招募各班環保小尖兵:

透過招募學生,成立環保小尖兵。小組成員每週兩次負責全校的資源回收工作,並協助清理、分類和記錄回收成果。這不僅能讓學生學習實際操作技巧,還能在團隊合作中培養責任感和領導力,服務學習,學習服務。 此外,針對環保小尖兵,本校設有獎勵制度,表揚表現優異的小組或個人,激勵學生積極參與。同時,透過這些活動也能讓學生自發地成為環保理念的傳遞者,將正確的資源回收觀念帶回家中。

#### 3. 在學科中融入環境教育內容:

當然,環境教育並非只有活動執行,亦可將其與課程內容緊密結

合。例如,數學課可以讓學生計算回收材料的數量與重量,進一步 了解回收對環境的影響;自然課則可以講解回收材料的分解過程和 再利用技術;藝文課則能讓學生以環保為主題創作,提升對環境議 題的關注度。透過將環境教育融入學科內容,學生不僅能在課堂上 學習知識,更能將這些知識應用於實際生活中,從而更全面地理解 環保的重要性。

#### 三、資源回收帶來的正面影響

透過上述實踐,校園資源回收已經不僅僅是一種管理手段,而是一種深遠的教育模式。我認為可以帶來以下明顯的正面影響:

#### 1. 學生環境意識的提升:

隨著資源回收的普及,越來越多的學生開始自發關注環保議題。他 們不僅能夠分辨不同類型的回收物,還能認識到資源有限的事實, 進一步減少浪費。

#### 2. 校園環境的改善:

透過有效的資源回收分類和妥善處理校園垃圾,校園變得更加整潔有序。同時,學生的參與感也使他們更加珍惜公共環境,主動維護校園的乾淨。

#### 3. 家庭影響力的擴大:

許多學生會將在學校學到的資源回收知識帶回家中,影響家人的環保行為。例如,教導家人如何正確分類垃圾,或者減少使用一次性用品。這種從校園延伸到家庭的影響,進一步擴大了環境教育的範圍。

#### 四、未來的期許

資源回收和環境教育是長期的工作,只有不斷進步和創新,才能讓這項工作持續發揮影響力。在未來,期許自己希望能夠將校園環境

#### 肆、淡水河流域夥伴年度成果

維護的範圍更加擴大:

與地方社區合作,開展更大規模的環保活動,讓校園成為社區環境教育的中心。

開發更多創新的教學資源,例如運用數位技術製作資源回收的互動課程,讓學生能夠透過遊戲和模擬進一步學習。

建立環保行為的追蹤機制,例如設置每班的環保積分系統,定期公布數據,讓學生和老師都能清楚看到自己的努力成果。

資源回收不僅是校園管理的一部分,更是一個教育與行動相結合的平台。透過不斷的努力,我相信我們能夠培養出更多具有環境責任感的下一代,並讓資源回收的理念在社會中更加深入人心,讓人人都能為環境盡一份心力,一起讓生活環境變得更好!



